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Abstract— Images usually contain areas that particularly at-
tract people’s attention and visual attention is an important
feature of human visual system (HVS). Visual attention had
been shown to be effective in improving performance of existing
image quality assessment (IQA) metrics. However, with the
quick advancement of IQA research, the booming of open IQA
databases calls for associated comprehensive and accurate visual
attention dataset. Despite of the large number of existing com-
putational attention/saliency models, the most accurate measure
of human attention is still human based. In this research, we
first conduct extensive eye tracking experiments for all the
pristine images from the seven widely used IQA databases
(LIVE, TID2008, CSIQ, Toyama, LIVE Multiply Distortion, IVC
and A57 databases). Then we propose a gaze-duration adaptive
weighting approach to generate saliency maps from the eye
tracking data. When applied on the IQA databases, experimental
results suggest that accuracy of benchmark quality metrics, e.g.
PSNR and SSIM can be systematically improved, outperforming
existing saliency datasets. Both the eye tracking data and the
saliency maps in this research will be made publicly available at
gvsp.sjtu.edu.cn.

I. INTRODUCTION

It is widely known that the most accurate approach to image
quality assessment (IQA) is subjective viewing test. However,
it is not always feasible to execute subjective tests in many
circumstances. Therefore, much effort has been devoted to
develop objective IQA metrics in the last decades. The ultimate
goal of objective IQA is to provide computational metrics
with results that are well correlated to human ratings. For the
convenience of design and compare of different IQA metrics,
many image databases were made publicly available [1]–[7].
These image databases consist of a number of unimpaired
images and series of distorted images with different types of
distortion at different levels. And the mean opinion scores
(MOS) or Differential MOS (DMOS) of all these images
are also provided in the databases. Since the HVS is the
ultimate receiver and valuator of images, researchers tend
to take properties of HVS into account. For example, SSIM
[8] was designed with the assumption that HVS is good at
extracting the structural information from images.

Since visual attention is an important feature of HVS, it is
natural to investigate the effectiveness of applying subjective
visual attention data into IQA [9]–[11]. Intuitively, those areas
that attract more subjective attention should be heavily weight-
ed during the pooling stage of IQA metrics. A. NINASSI et
al.’s work [11] found that the performance gain was not clear

when applying visual attention into IQA. In their test, eye
tracking data was collected with the DSIS (Double Stimulus
Impairment Scale) method. The visual attention data may not
be very accurate because subjects had to view images of the
same content frequently. And subjects also had to rate the
quality of images during the experiments. On the other hand,
more recent research of [9], [10] both verified the validity of
visual attention weighting on several IQA databases (LIVE,
Toyama and IVC). Liu and Heynderickx [9] conducted two
experiments with and without quality rating task for the LIVE
database and they found that task-free data tend to be more
effective. But during the computation of saliency maps for eye
tracking data, they ignored the duration of fixation points.

In this paper, we will provide visual attention data for all
the widely used IQA databases including LIVE [1], TID [2],
CSIQ [3], Toyama [4], LIVE multi [5], IVC [6] and A57 [7].
More specifically, we performed eye tracking experiments on
all the unimpaired images from those databases in a task-
free setting. And we employed a duration adaptive approach
to generate saliency maps from eye tracking data. When
applied on benchmark IQA approaches (PSRN and SSIM),
our saliency maps bring higher performance improvement than
existing datasets [9]–[11]. Both the eye tracking data and the
saliency maps in this research will be made publicly available
at gvsp.sjtu.edu.cn.

The rest of this paper is organized as follows. In Section
II, the eye tracking experiment will be introduced in detail
together with the approach to generate saliency maps from
eye tracking data. Eye tracking data and the saliency maps
will be verified and compared to existing datasets in Section
III. Finally, conclusion is drawn in Section IV.

II. EYE TRACKING DATA AND SALIENCY MAPS

A. Eye Tracking Experiment

1) Apparatus: The eye tracking experiments were per-
formed with Tobbi T120 Eye Tracker. Tobbi T120 has a
sample frequency of 60 or 120 Hz. The Tobbi T120 Eye
Tracker is integrated into a 17 inch TFT monitor, so as to
make the user experience more natural. The resolution of the
monitor is 1280 × 1024 pixels. Tobbi T120 typically has a
spatial resolution of 0.3 degree and it’s typical accuracy is 0.5
degree. It’s head movement box (width × hight) is 30×22 cm
at 70 cm, and the tracking distance is 50 ∼ 80 cm. A photo
of a eye tracking test with Tobbi T120 is given in Fig.1.
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Fig. 1. A Test with Tobbi T120 Eye Tracker.

2) Stimuli and Procedures: Five subjects participated in the
eye tracking experiment, all of which were college students.
The reason why we only include five subjects in the exper-
iment would be discussed in the third paragraph of section
III-B. During the tests, all subjects were asked to look freely
at the monitor. As mentioned, the pristine images from those
seven IQA databases were used as test stimuli. Statistics of
the test images are listed in Table I. Note that some repeated
images in those databases were excluded from our test.

TABLE I
TEST IMAGES USED IN THE EYE TRACKING EXPERIMENTS

Database name Image size (W × H) Image Number

LIVE W:480∼768 H:438∼720 29

TID2008 512 × 384 25

CSIQ 512 × 512 30

Toyama 768 × 512 5

LIVE Multiply 1280 × 720 15

IVC 512 × 512 10

A57 512 × 512 3

To prevent from prolonged viewing test and improve test
accuracy, we divided all these test images into four groups
according to the source databases and image size. Each group
consisted of 30 images or less. To reduce fatigue, there was a
break for five minutes between the viewing of two test groups.
Before the test, a five point calibration was performed for
each participant. In each group, images were presented in a
random order. Every image was presented on the display for
ten seconds, and between two images, there was a five seconds
gray screen.

We adopted a single-stimulus (SS) free-looking approach in
our eye tracking experiment. The experiment was conducted
in a normal lighting condition with a viewing distance of
about 65 cm. A comparison of the specifications of those eye
tracking experiments is listed in Table II. In this table, ‘Ours’
is this work, ‘Engelke’ indicates Engelke et al.’s [10], and
‘Liu’ denotes Liu and Heynderickx’s experiments [9].

TABLE II
COMPARISON OF SETTINGS OF EYE TRACKING EXPERIMENTS. SS:

SINGLE STIMULUS

Experiment Ours Engelke [10] Liu [9]

Sample rate 60 Hz 40∼45 Hz 50 Hz

Resolution 1280×1080 1280×1080 1024×768

Viewing distance 65 cm 60 cm 70 cm

Method SS SS SS

Subjects 5 15 20 per test

Viewing time 10 sec 12 sec 10 sec

Interval 5 sec 3 sec 3 sec

B. Processing of Eye Tracking Data

1) Eye Tracking Data: The eye tracking data derived from
the experiments were those fixation points. A fixation point
is represented by a location (coordinates) together with a
gaze duration. We analyzed those duration data and found
the mean value is: µ = 409.8029 ms. A histogram of all
fixation durations from our experiments is illustrated in Fig.2.
A parametric fitting was conducted and we found the following
Gamma distribution depicts the results well.

f(x) = c · (kx)(α−1)λαe(−λkx)

Γ(α)
, x > 0 (1)

with α = 2.681, β = 4.036, c = 0.001747, k = 0.001821.
The fitted curve is also illustrated in Fig.2 and we can
see that the fixation duration obeys the gamma distribution
approximatively.
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Fig. 2. Histogram of fixation duration with parametric fitting.

2) Saliency Map: Using location and duration data of the
fixations, we can generate the saliency maps. Some attempts
have been made to compute saliency maps from the fixation
data. Liu and Heynderickx [9] overlaid 2D Gaussian masks
of the same shape centred at each fixation location. We also
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Fig. 3. Illustration of some saliency maps. (a)(b)(c)source images from LIVE
database, (d)(e)(f)saliency maps from this work, (g)(h)(i)saliency maps from
Liu and Heynderickx [9], (j)(k)(l)saliency maps from Engelke et al. [10].

used 2D Gaussian masks, but with the consideration of fixation
duration. Longer fixation duration generates a wider mask. The
final saliency map is computed as:

SMi(k, l) =
T∑
j=1

exp

[
− (xi − k)2 + (yi − l)2

[c · log(dj)]2

]
(2)

where (k, l) is the coordinates of the saliency map for image
Ii. k ∈ [1,M ]; l ∈ [1, N ] and M × N is the size of stimuli
image Ii. SMi(k, l) is the value of the saliency map at (k, l).
T is the number of all fixations from all subjects. The position
of the jth fixation point is determined by (xj , yj). In Eq.(2),
standard deviation of the Gaussian mask is computed as a
logarithm function of the fixation duration:

σj = c · log(dj) (3)

In Eq.(3), dj is the fixation duration of jth fixation point,
and c is a contrast number. It is easy to imagine that we
use a greater gaussian patch for a fixation that had a longer
fixation duration. In this paper, we set c as 6 for all images
except for those from the LIVE Multiply Distortion database
[5]. Considering the fact that images from LIVE Multiply
Distortion database generally have greater image size, we set
c = 10. In Liu and Heynderickx’s work [9], the same Gaussian
mask was used despite of the different fixation duration. A.

NINASSI et al.’s work [11] took fixation duration into account,
but as affected by the DSIS testing approach, performance gain
was not substantial. An illustration of saliency maps from this
work and those in [9] and [10] is given in Fig.3.

III. THE VALIDATION OF EYE TRACKING DATA AND
SALIENCY MAPS

A. Saliency-weighted Image Quality Metrics

To verify the effectiveness of the eye tracking data, we
applied saliency maps into two widely used full reference
(FR) image quality assessment metrics: peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) index [8]. We
generated the distortion maps first, then pooled the distortions
with weights given by the saliency maps. The saliency map
weighted quality metric is defined as:

SM -Q =

∑M
x=1

∑N
y=1 SMi(x, y) ·DMi(x, y)∑M
x=1

∑N
y=1 SMi(x, y)

(4)

where SM -Q is the saliency map weighted quality value,
M × N is the size of the image. SMi is the saliency map
that gives the weight, given by Eq.(2). DMi is the distortion
map between the distorted image Di and the source image
Ii. (x, y) are the spatial coordinates. And in Eq.(4), different
DMi will give different SM -Q. If DMi is the distortion map
calculated by the SSIM metric, then SM -Q is saliency based
SSIM (SM-SSIM). If DMi is given by square error, then
SM -Q is saliency based mean square error (SM-MSE), and
we can calculate saliency based PSNR (SM-PSNR) from SM-
MSE easily. An illustration of saliency based distortion maps
is given in Fig.4.

B. Performance of Saliency-weighted Quality Metrics

We conducted the test of saliency weighted image quality
metrics on seven IQA image databases [1]–[7]. A widely
used performance metric: Spearman Rank-Order Correlation
Coefficient (SROCC) was employed. Performance of four
metrics (PSNR, SM-PSNR, SSIM, SM-SSIM) in terms of
SROCC was listed in Table III. In this table, ‘SM-P’ is
short for SM-PSNR, ‘SM-S’ denotes SM-SSIM, and ‘LIVEm’
indicates LIVE Multiply Distortion. From Table III, we can
see that a substantial performance gain can be achieved when
applying the visual attention data into IQA metrics.

Liu and Heynderickx provided saliency maps for the LIVE
database, and Engelke et al. provided saliency maps for LIVE,
Toyama and IVC database. A comparison of IQA metrics’
performance using different saliency maps is also given in
Table IV. In Table IV, ‘w/o’ means without using saliency
maps and meanings of other fields are self-evident. From Table
IV, we can see that the saliency maps in this work lead to
higher performance gain as compared to existing data.

In this paper, the eye movement data was the average
of only 5 participants. During our test, it was noticed that
superimposing too many subjects’ fixation data always result
in oversmoothed saliency maps and therefore, lead to very
limited performance gain for the IQA metrics. Since there are
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Fig. 4. Illustration of saliency based distortion maps. (a)source image,
(b)JPEG compressed image, (c)saliency map, (d)saliency weighted image,
(e)distortion map of SSIM for (b)and(a), (f)saliency weighted SSIM distortion
map, (g)distortion map of squared error for (b)and(a), (h)saliency weighted
squared error distortion map.

TABLE III
PERFORMANCE OF IQA METRICS IN TERMS OF SROCC

Metric PSNR SM-P Gain SSIM SM-S Gain

LIVE 0.8755 0.8946 1.91% 0.9100 0.9352 2.52%

TID 0.5529 0.5601 0.72% 0.6256 0.6974 7.18%

CSIQ 0.8057 0.8192 1.35% 0.8368 0.8762 3.94%

Toyama 0.6130 0.7182 10.52% 0.7865 0.8585 7.20%

LIVEm 0.6771 0.7583 8.12% 0.6455 0.7598 11.43%

IVC 0.6887 0.7304 4.17% 0.7785 0.8030 2.45%

A57 0.6189 0.6297 1.08% 0.4072 0.4979 9.07%

inevitable noisy measures in the eye tracking data, averaging
over a too large number of fixation data tend to mix the
‘accurate’ measures with those ‘noisy’ measures and therefore
reduce the overall credibility. As a consequence, although
dozens of participants were involved in the test, we chose
to average from only five of the personnels we deemed the
most responsible. And as shown in this section, the final eye-
tracking data revealed in this work seems to be more valid
than previous data collected from larger number of viewers.

IV. CONCLUSION

It is a trend for image quality research to take into account
of visual attention data. Despite of the large number of image
quality databases, there is no comprehensive subjective visual
attention data available. To fill this void, in this paper we

TABLE IV
PERFORMANCE OF IQA METRICS OF DIFFERENT SALIENCY MAPS IN

TERMS OF SROCC

Saliency Maps w/o ours Engelke [10] Liu [9]

LIVE
PSNR 0.8755 0.8946 0.8893 0.8911

SSIM 0.9100 0.9352 0.9328 0.9299

Toyama
PSNR 0.6130 0.7182 0.6960 -

SSIM 0.7865 0.8585 0.8270 -

IVC
PSNR 0.6887 0.7304 0.7291 -

SSIM 0.7785 0.8030 0.7756 -

conducted eye tracking experiments for the reference images
from seven widely used IQA databases (LIVE, TID2008,
CSIQ, Toyama, LIVE Multiply Distortion, IVC, A57). We also
proposed a fixation duration adaptive approach to generate
saliency map from the eye tracking data. Extensive experi-
mental results were provided to verify the effectiveness of the
proposed data and approach. Both the eye tracking data and
the saliency maps will be made available to the community at
gvsp.sjtu.edu.cn.
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